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Noisy chaotic trajectories, with finite-time Lyapunov exponents that fluctuate about zero, are basically
unshadowabl¢S. Dawson, C. Grebogi, T. Sauer, and J. A. Yorke, Phys. Rev.713et927(1994]. This can
occur when periodic orbits, with different numbers of unstable directions, coexist inside the attractor. The
presence of a Hen-type chaotic saddig.e., a nonattracting chaotic set with a structure similar to that of the
Henon attractor guarantees such coexistence in a persistent mgsn&. Dawson, Phys. Rev. Le#6, 4348
(1996)]. In this paper, we describe how these sets appear naturally in maps of more than two dimensions, how
they can be found, and what crises they prod(i84063-651X97)13005-1

PACS numbegs): 05.45+b, 05.40+j

I. INTRODUCTION 222). Other types of phenomena, in which nonattracting in-
variant sets play an important role, anéses[6]. Crises oc-
The studies of chaos in low-dimensional dynamical sys-cur when a chaotic attractor collides with an unstable peri-
tems have grown steadily during the past decades. In mosdic orbit, in which case, the attractor either changes size
physical problems, the evolution of(bow-dimensiongl dy-  suddenly or disappears. Nonattracting sets can themselves be
namical system is given by a set of ordinary differentialchaotic. Nonattracting chaotic sets also affect the observable
equations(ODE’s) for the variables that define the state of dynamics[7]. For example, they can generatensient
the system. For certain purposes, looking at discrete timeshaos[8], i.e., trajectories that look chaotic for a while but
provides the necessary information about the system. Ifinally settle down into a periodic orbit. The length of these
these cases the evolution is described by, usually nonlineachaotic transients can increase dramatically with the number
maps. Given a set of ODE'’s, this can always be achievedf dimensions, showing the necessity of studying chaotic
provided that a suitabl®oincare surface of sectioran be saddles in systems with many degrees of freedom. On the
found, in which case the corresponding map is call@bm-  other hand, the structure of both perioffid and chaoti¢ 10]
care map (see, e.g.[3], p. 64. In this paper, we work with nonattracting sets has been determined in real experiments,
maps which contract the phase space volume, i.e., they aproving that they leave their imprint on the observable dy-
dissipative We introduce the basic definitions related to namics. This shows that the study of nonattracting sets is not
maps as dynamical systems in the next section. However, waerely academic but it can be of important practical use.
want to describe, first, the main ideas of the present work. In this paper, we are mainly interested in nonattracting
We refer the reader to the next section in case there is songets that are chaotic, in particular, in the so-caldééotic
concept whose meaning is not very well known. saddles The most famous example of this type is the invari-
In the case of dissipative systems, one is usually interant set of the(Smale horseshoe mafl1], which has been
ested in the asymptotic behavior, in particular, in what cari‘a motivating example for the development of the modern
be observedafter a transient disappears. For this reasontheory of dynamical systems(’[12], p. 230. The horseshoe
most studies of chaotic dynamics have concentratedn@a  map is a 2D map from the unit squareR4. Its invariant set
otic attractors Chaotic attractors always coexist witlbnat-  belongs to the unit square. It is at the intersection of two
tracting invariant setsMoreover, in most cases, these non- Cantor sets, one of vertical lines and the other of horizontal
attracting sets are tightly related to what can be observedines[see Fig. {a)]. The invariant set is a chaotic saddle. It
For example, chaotic attractors contain a dense set of urcontains a dense set of periodic orbits, with one expanding
stable(i.e., “unobservable’ periodic orbits[4]. These peri- and one contracting direction, and has a Cantor set structure
odic orbits can be used to calculate the Lyapunov exponentlong both the stablécontracting and the unstabléxpand-
of a typical chaotic trajectory on the attrac{&]. The num- ing) directions. As described later, this type of structure is to
ber of their expanding directions usually determines thebe expected in the case of 2D dissipative majsHowever,
number of positive exponents. This means thatseasitivity  as we show in this paper, other types of nonattracting chaotic
to initial conditions which is typical of chaos and is mea- sets can exist in maps of slightly higher dimension, maps that
sured by the Lyapunov exponents, is related to properties dfave not been studied in great detail in the physics literature.
the unobservable periodic orbits. Moreover, in the case of In fact, the maps that have been most widely studied are
flows, the way in which thgunstablé periodic orbits are one-dimensionalnoninvertible maps of the interval or maps
linked can imply that the attractor is chaotaee, e.9.[3], p.  of the circle and 2D mapgusually diffeomorphisms[13].
Chaos can occur in noninvertible-dimensional maps, with
m=1, and inm-dimensional diffeomorphisms, witm=2.
*Electronic address: silvina@iafe.uba.ar Among the dissipative systems, thérnda family
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FIG. 1. Schematic picture of a region of a chaotic invariant set
that is nonattractinga) and of one that is attractingp) for a 2D X
diffeomorphism of the square to itself. In both pictures the horizon-
tal direction is contracting and the vertical one is expanding. The FIG. 2. An actual realization of the scheme shown in the previ-
invariant set in(a) is at the intersection of a Cantor set of vertical ous figure that occurs for the'Hen map[Eq. (1)] with b=0.3. The
lines and a Cantor set of horizontal lines, some of which are showfigure on the left corresponds to the piece of a chaotic saddle at
in the picture. The region shown of the attractor(lim is a Cantor  p=4.2 contained in &£x=<3, 0.7/<y=<2. The figure on the right is
set of vertical lines. Thus, the invariant set(@ has a Cantor set the piece of an attractor gh=1.2 contained in 0&%x<1.3,
structure along the unstable direction while the onéojris smooth.  0.5<y=0.9. These figures were made using the softwaremics
The horizontal lines which contain points that approach points inas described if18].

the invariant sets form a Cantor set (@ while they foliate the . . . .
whole region shown irtb). For this reason an initial condition ran- the horizontal lines of the stable foliation. For this reason,

domly chosen in the region shown will approach the invariant set i} 1S nonattracting whileA is an attractor. We also show
(b) but not in(a). This shows the difference between the attractorPictures of a ChQOt'C Sadd(_ef h_orseshoe typeand_ a chaotic
(b) and the nonattracting set in this case. attractor of the Heon map in Fig. 2, where the different type

of structures can be observed.

In higher-dimensional maps, other types of nonattracting
chaotic sets can exist, in particular, chaotic saddles that are
smooth along some unstable directig@$ In almost all the

Yn+1=Xn, @ examples of maps that we can think of, there are invariant

manifolds (i.e., manifolds,M, such that if we pick up an

provides a prototypical example of what can be observed imitial condition inM all forward and backward iterations of
2D diffeomorphisms. Changing the values of the two paramit stay in M), which are of lower dimension than the whole
eters,p and b, one can find stable periodic orbits, chaotic phase space. Typical examples are the stable manifolds of
saddles, and strange attractors on which the dynamics is chanstable periodic orbitg§see the next sectiopnThe chaotic
otic. In the case of 2D dissipative diffeomorphisms, and, insaddles that we describe in this paper belong to an invariant
particular, for the Heon map, these chaotic saddles have themanifold of lower dimension than the phase space. More-
same structure as the invariant set of the Smale horseshasver, they are chaotic attractors with a structure similar to the
i.e., they are products of Cantor sets. On the other hand, th@enon attractor, if we restrict the dynamics to the invariant
chaotic attractors of this map also contain a dense set ghanifold. However, when we look at the whole phase space,
periodic orbits with one expanding and one contracting dithey are not attractors, because the manifold itself is not
rection, but they are “smooth” along the unstalféxpand- attracting. We call these sekenon saddlesin [2] we de-
ing) directions[15]. The “smoothness” along the unstable scribed how these H®n saddles could arise via a sequence
directions is the basic difference between a chaotic attractasf bifurcations out of unstable periodic orbits. For this reason
and a chaotic saddle in 2D, and it is related to what is callegve expected them to appear as often as strange attractors in
the absolute continuity of the stable foliatidd7] (p. 216.  maps of more than 2D. In fact, we show in this paper several
We show this difference, schematically, in Fig. 1, where weexamples of Heon saddles that are formed in this way. All
depict parts of two chaotic invariant sets of a 2D diffeomor-the examples correspond to a 4D map that models a particu-
phism. The invariant set, in Fig. 1(a) is nonattractingof  lar physical system, thdouble-rotor map[19,20 (see Sec.
horseshoe typelt is the intersection of a Cantor set of ver- 1I1), which has not been tailored to display this behavior.
tical lines and a Cantor set of horizontal lines, some of whichFurthermore, it has been proved that, under certain condi-
are shown in the figure. The invariant sgt, in Fig. 1(b) is  tions, homoclinic bifurcationgassociated with orbits ho-
an attractor(of Henon type. The piece we show is a Cantor moclinic to fixed points with at least two unstable directipns
set of vertical lines. All the region shown in Fig(t) is  give rise to the formation of He®n saddleg21], in very
“foliated” by the stable sets of the points il (i.e., by = much the same way as Hen attractors appear in homoclinic
points that approachl under forward iterations of the map  bifurcations of 2D diffeomorphismi22]. Moreover, the re-
On the other hand, the stable set &fis a Cantor set of sult in [22] states that these lHen attractors can be found,
horizontal lines. While there is a nonvanishing probability with a nonvanishing probability, by choosing the parameters
that, by choosing an initial condition at random in the regionat random. All these results reinforce our idea thanéte
shown in Fig. 1b), we will end up approachingl, there isa saddles should be found very often in maps of more than 2D.
zero probability that an analogous thing will happen with  As described if2], the existence of a H®n saddle can
A in Fig. 1(a), since we would need to lie exactly on one of give rise to(persistent trajectories that visit the vicinity of

_ 2
Xn+1_P_Xn+anv
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periodic orbits with different numbers of unstable directions.system evolves forward or backwards in time, i.e.,
In fact, we describe in detail an example, in Sec. IV, inf"(A)CA for ne Z, where we denote bf the n-fold com-
which a chaotic saddle of horseshoe type, containing periposition of f with itself, if n=0 and that of the inverse,
OQic orbits with 1D unstable manifolds, “collides” with a -1 if n<0. AC M is positively invariantif f"(A)CA for
Henon saddle, giving rise to an invariant set that containgyc z, n=0.

both 1D and 2D unstable periodic orbits. Again, this example The simplest examples of invariant sets are fhed

corresponds to the double-rotor map, a map that describ%ims [points xe M such thatf(x)=x] and theperiodic
the dynamics of a simple mechanical system. Moreover, irg

this example, if we change the parameters, a crisis occur oints [points x< M such thatf?(x) =x with p<N]. An
after which the invariant set, with its 1D and 2D unstable rbit that starts at such a periodic point is periodic of period

orbits, belongs to the attractor of the system. This type of” Fixed points are periodic orbits of period 1. The dynamics

behavior can occur in gersistentway because the set of in the vicinity of a fixeq point or periodic orbit can usually
points that approach the Hen saddlg(its stable setis of ~ € analyzed by linearizing the maf® around the corre-
larger dimension than the stable manifolds of its periodicSPonding periodic pointx. In this way the(local) dynamics
points. As described in Sec. Ill, this property also allows usS 9iven by y,,;=DfP(x)y,, where y,=x,~x and
to find, numerically, Haon saddles that contain 2D unstable DfP(x) is the derivative matrix of? at the periodic point,
periodic orbits(i.e., with two expanding directionsising a  X. According to the Hartman-Grobman theordd®], the
technique[23] that was developed for chaotic saddies linearization provides meaningful information if the periodic
horseshoe typewith only 1D unstable periodic orbits. point ishyperbolig i.e., if the norms of all the eigenvalues of
A trajectory that visits the vicinity of periodic orbits with DfP(x) are different from 1. The subspace spanned by the
different numbers of expanding directions will have at least(generalizegl eigenvectors oD fP(x) with norm less than 1
one finite-time Lyapunov exponent that changes sign alongs called thestable subspagés(x), and the one spanned by
its way. If this causes the exponent to fluctuate about zerahose with norm bigger than 1 is called th@stable sub-
then any noise added to the trajectésych as the one that is space EY(x). If all the eigenvalues oDfP(x) have norm
unavoidable in numerical simulationmakes the noisy tra- less than 1, then, the periodic pointsimble[26]. Moreover,
jectory continuously unshadowablgl]. This means that it is asymptotically stablei.e., there is a neighborhoddt-of
there is no continuous deformation of the noisy trajectoryx such that ifx e Uy, thenfP"(x) —x asn—o. On the other
that can reduce the noise all the way down to zero. Thushand, if there is at least one eigenvalue with norm bigger
numerically generated trajectories of this type are highly unthan 1, then the fixed point isnstable
reliable. On the other hand, if the noise is intrinsic, in the Given a periodic pointfof a diffeomorphismf, there
sense that is produced by variables that are left aside duringre alsoglobal stableand unstable manifoldsWs(x) and
the modeling, this problem raises the concern of how vaquNU(X_), which are as smooth ds have the same dimension
the model itself is. Although some years ago there was somgs the subspacé&s(x) andEY(x), respectively, and are such
debate around this questip®4], we think it still remains an that W3(x) [W(x)] is tangent toES(x) [EY(X)] atX. If X is
open problem. Fluctuating Lyapunov exponents are also agyperbolic, then, difW5(x))+dim (WU(x))=dim(M),

sociated to other dramatic behaviors, such as riddled basinghjle Ws(x)={x:fP"(x)—x as n—»} and WU(X)
blow-out bifurcations, and on-off intermitten¢g4]. ={x:fP"(x)—>x asn— —}. In this case, the stable and un-
The organization of the paper is as follows. In Sec. Il, westaple manifolds are the set afl points that tend to the
introduce some basic definitions providing an intuitive pic-periodic point,x, under forward or backward iterations of
ture of what they mean. In Sec. lll, we describe hownbie b respectively. These manifolds are invariant sets whose
saddles arise via a sequence of bifurcations out of unstablgganization in phase space provides information about the
periodic orbits, showing several examples in which this iSqynamics of the system. In particular, if there is a hyperbolic
realized. In Sec. IV, we comment on the crises that can 0ocCUyed point,x, and we pick up an initial condition sufficiently
when there is a H®on saddle. In particular, we describe, in ¢jgse toWS(x), the trajectory will approacix for a while
detail, the example of a chaotic saddle of the double-roton it will eventually move to some other place, “follow-
map that collides with a'i—f.u)n saddle. We analyze, in this g » nherhaps, other manifolds. The stable and unstable
case, how the various finite-time Lyapunov exponents bemanifolds of a periodic poinix, can also intersect at points
have. In Sec. V, the conclusions are summarized. other thanx, which are calledhomoclinic points A ho-
moclinic point, g, is such thatfP"(q)—x asn— *o. The
Il. BASIC DEFINITIONS corresponding or_bi_t is c:_:llled_a homoclinic orbit. The_ exis-
tence of homoclinic orbits gives rise to very complicated
In this paper, a dynamical system is a mapM— M, dynamics. In particular, they imply the existence of invariant
from a phase spaceM, to itself. The phase space is an sets similar to those of the Smale horsesteee, e.9.[12],
m-dimensional (D) differentiable manifold such that a p. 252. Given two fixed(or periodig points,x; andX,, there
point in it corresponds to one state of the real sysfgB]. can be points ge WS(x;) NWY(X,), or geW'(xy)
For the sake of simplicity, we will conside{CR™. Letus  NW5(x,), which are callecheteroclinic and are also associ
assume thaf is a diffeomorphism(as it is always the case ated to complicated dynamics.
for Poincaremaps of smooth flows In such a case, an orbit In the preceding section, we talked abattractors An
is a sequencéx,} .z such thatx,,,=f(x,). The forward attractor is the invariant set on which the observable
orbit is the subsequence witt=0. A subset of phase space, asymptotic evolution “occurs.” More precisely, an attractor
AC M, is calledinvariant if it is mapped onto itself as the is a closed invariant sed e M, with a dense orbit and with
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the property that it has an open neighborhddd) A, which
contains a subset) . (U, CU), of positive Lebesgue mea-
sure, such that, ikeU,, thenf"(x)—A asn—x [12].
This means that, if one chooses an initial condition at ran-
dom in U, then there is a nonvanishing probability that its
forward orbit will approach the attractdas in the case of
Fig. 1(b), for exampld. Numerically generated pictures of
attractors are based on this fact: an initial condition is picked
up at random and points of the forward orbit, withbig
enough, are drawn. Provided that this is done with no errors,
one obtains a picture which, to the eye, is indistinguishable <)
from the attractor. The set of points whose forward orbits
approach the attractor is called thasin of attraction
Asymptotically stable fixed points or periodic orbits are
examples of attractors. As already mentioned, attractors can
also be strange and the dynamics on them can be chaotic. A
chaotic attractoris an attractor that has a dense sefwof-
stablg periodic points and exhibits sensitive dependence on
initial conditions[4]. This means that two initial conditions,
which are very close to one another, generate forward orbits
that diverge(exponentially from one another. One way of
characterizing this sensitivity is by means of thgapunov FIG. 3. A schematic picture of how a’Hen attractor can arise
exponentsThese numbers quantify the average rate of exvia a sequence of bifurcations. At=p, the attractor is a stable
pansion and contraction along the different directions infixed point whose stable manifold is the basin of attract®n(a).
phase space, as the system evolves. Lyapunov exponemsp=p? , p,<p} <p,, x suffers a period doubling bifurcation and
only exist for pointsx e M which are calledegular[27]. A a period 2 orbit is born. Ap=p, the period 2 orbit is stablét is
point xeM is regular if there are numbers the new attractorwhile x is unstable. We show its 1D unstable
N1(X)>N\p(X)> - - - >\4(x) and a decomposition of the tan- manifold (b). The sequence of bifurcations goes on, untipatp,
gent space ofM at x, T, M, of the form T,M=E,(x) the attractor is chaotic, contains all the periodic orbits that were
@ - - - ®E4(X), such that involved in the sequence of period doubling bifurcations, which at
p=p are 1D unstable, and is smooth along the unstable manifolds
1 (c). At least part of the basin of attractioB,, at p=p., comes
lim ﬁlog||(Df”(x))u||=)\j(x), (2)  from B, by a smooth deformation.

n—oo

for everyu e Ej(x), u%0 and every &j<s[27]. The num- two. In the_ !atter case, the eigenspadgs, associated to one
bers, \;(x), are the Lyapunov exponents and they are_Of the_ positive Lyapunov exponents are alway_s tangent to the
unique. The decomposition in thegenspaces fx) is also ~ nvarnant manifold, V, on which the saddle is attracting,
unique. We call dinite-time(or time-T) Lyapunov exponent while those a_sszﬁla;ed to th? other ﬁosn[vehgxponentﬁ are
, : : o transverse to it. All the examples we show in this paper have
the number);, obtained as in Eq(2), but for n finite only two positive Lyapunov exponents, one with its eigens-

(n=T). A result due to Oseledd@8] states that almost ev- oV and th h it | .
ery point in an attractor is regular. Moreover, all “typical pace tangent toV: and the other one with its eigenspace
transverse toV.

points” in a given attractor have the same Lyapunov expo-
nents[29]. For this reason one associates the Lyapunov ex-

ponents with the attractor. A positive Lyapunov exponent IIl. FROM BIFURCATIONS OF PERIODIC ORBITS
means that there is an expanding direction, and therefore, TO HENON SADDLES

sensitivity to initial conditions and chaos. The value of a . .
positive Lyapunov exponent provides an indication of how Let us reca!l hOW. a Heon attractor may appear via a
much two nearby orbits separate in time. Chaotic saddles argrdquence of blfurca.tlons, as a paramete_r is varied. For this
invariant sets which have a dense set of periodic orbits wittPUrPoSe, let us consider anD diffeomorphism that depends

at least 1D stable manifolds, and display sensitive deper2" @ Parametep. For some value o, €.9.,p,, the attractor,

dence on initial conditions, i.e., they have a positive“As IS @ stable fixedor periodig point, x. At p=p,, the
Lyapunov exponent. mD stable manifold ofx is the basin of attraction of the

Finally, we will call aHénon attractorany chaotic attrac- attractor [see Fig. &)]. Let us call this basinB,. At

tor such that all its periodic orbits are 1D unstable, and that i® =1 » the fixed point undergoes a period doubling bifurca-
smooth along the unstable manifold., that is similar to tion and become€lD) unstable. Immediately after the bifur-
the chaotic attractors found for the  hten family (1)]. We  cation, at p=p,>p7, x has a 1D unstable and an
will call a Henon saddlea chaotic saddle that belongs to an (m—1)-dimensional stable manifold. Meanwhile, the new
invariant manifold of lower dimension than the phase spac@ttractor, A, is a period 2 orbit whose basin of attraction,
and such that, on this manifold, it is & hten attractor. While  B,, is such that, at least part of it, is a smooth deformation of
a typical trajectory on a Hen attractor has only one posi- B; [30] [see Fig. 8)]. At some other parameter value,
tive Lyapunov exponent, one on a ki saddle has at least p=p3 , the period 2 orbit becomes 1D unstable and the new
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FIG. 5. The physical system that leads to the double-rotor map.

(m—1)-dimensional stable manifold of the period 2 orbit,
immediately after the bifurcation, is a smooth deformation of
B,. Basically, the same sequence of pictures as those shown
in Fig. 3 hold in this case, but on then(-1)-dimensional
invariant manifold that, ap=p,, is the stable manifold of
x. In this case, the invariant set, @t p.., is a Haon saddle:
a chaotic saddle that is attracting on an invariant manifold of
lower dimension than the full phase space, and whose typical
X trajectories have two, rather than one, positive Lyapunov ex-
o _ _ ponents. This invariant manifold is a “remnant” of the
FIG. 4. An actual realization of the scheme described in thegtaple manifold of the primordial unstable periodic orbit,
previous figure that occurs in the hen map[Eq. (D] with  anq on this invariant manifold, the Hen saddle is attract-
b=-0.3. The figure on the upper left shows the attractor ating. In fact, we have found several examples ofnbie

g;:t'zinz?ci(tzzrtwci’t?] tzecrt(’)asss'n_r?%u;gig' ;\hfh:tggg?rr rliz hetl Egﬁi saddles that arise in this way, via a sequence of bifurcations
sponds top=1.8. At this value the attractor is a period 2 orbit out of unstable periodic orbits, in the double-rotor map.

(shown with crossgsAlso shown is the period 1 orbit which was The dOLl_b!e—rotor ma[)19,2(] is the return map of a sys-
attracting afp= 1.2 (indicated with a cross surrounded by a cijcle tem des/crlblng /the e\/_olutlon of two connected rods of
its unstable and part of its stable manifold. The unstable manifoldengthS/l and /2_’ moving on a plane under the effect of
has two branches, each of which approaches a point of the period 2 Kicks and damping19,20. One of the rods rotates about a
orbit. As before, part of the attractor's basin boundary is alsofixed pivot, while the other one rotates around the other end
drawn. The figure on the lower-left correspondspte 2.02. Here  Of the first rod. There are masses, andm;, at the free ends
we show the same period 1 orbit, its stable and unstable manifoldef both rods, and there is friction at both pivétee Fig. 5.
and part of the basin boundary. The attractor in this case is chaotié@ kicks of amplitudep are applied to one end of the second
(a Henon attractoy. It is shown in the figure on the lower-right. We rod periodically, with periodl'. Given this system, it is easy
can see that it is indistinguishable from the unstable manifold of théo obtain a map, relating the angles< 6, y=¢) and veloci-
period 1 orbit. In all figures-2.5<x=<2.5 and—2.5<sy=<2.5. ties (z= '9, w= ¢) immediately after ther{+1)th kick with
those immediately after theth one[19]. This map is of the
attractor is a period 4 orbit instead. The new ba#ig, is  form
such that, at least part of it, is a smooth deformatiorB ef

This picture goes on until, eventually, we have a chaotic Xn+1=Xpt Mz +Mpw,, mod2),
attractor, A; [see Fig. &)]. We do not want to describe
everything that happens for all parameter values, but at some Yn+1=Ynt+ Moz, +Mow,, mod2m),

value,p=p., there is a Heon attractor that contains all the

1D unstable periodic orbits that suffered the period-doubling

bifurcations just described. This attractor is the closure of the /1

unstable manifold ok [16] and it has one positive Lyapunov zn+1=|—sinxn+1+ L11Zn+ LW,
exponent. As before, at least part of the basin of thadte 1

attractor,B., “comes from” a smooth deformation dB;.

We show a schematic picture of this process in Fig. 3, and an
actual realization, for the H®n map, in Fig. 4.

Let us consider, now, a similar picture, but one in which
the primordial fixed pointx, is 1D unstabléand hyperbolit ~ whereM;; andL;; are elements of constant<2 matrices,
from the very beginning. Therefore, the stable manifold ofL,M, which depend on the lengths of the rods, the masses,
X atp=p; is an (m—1)-dimensional invariant manifold. Let the period of the kicks, and the friction coefficients at the
us call this manifoldB;. On B4, the fixed pointx, is attract-  pivots[20], andl; are the moments of inertia about the piv-
ing. Let us suppose that, ai=p}, x suffers a period- ots. We keep all the parameters fixed at the same values as
doubling bifurcation, immediately after which it becomes 2D those used i20], with the exception op, which we vary
unstable, while a 1D unstable period 2 orbit is born. Thefor different numerical experiments.

©)

P/2 .
Wn+1:_|2 SiNY 411 Lo1Zn+ Lowy,
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FIG. 7. The two largest Lyapunov exponents associated with the
invariant sets shown in Fig.(® as functions op. There is always
one positive exponent, which means that the sets are nonattracting,
and a second one that becomes positive when the invariant set be-
comes a Heon saddle.

remains in the region previously occupied by thénble
pye s saddle. We show in Fig. 7 the two largest Lyapunov expo-
P nents associated with the invariant sets of Fi@).6There,
we see that there is always one positive exponent and a sec-
FIG. 6. (a) Bifurcation diagram of invariant sets of the double- ond one, that becomes positive when the invariant set be-
rotor map that are nonattracting in the full phase space, but arggmes chaotic. Therefore, the second Lyapunov exponent is
attracting inside an invariant 3D manifold. All points in the figure g5sociated to the expanding direction that is contained in
have been obtained using the PIM-triple methdl.Blowup of the N, while the first one corresponds to the expansion trans-
figure in (@) in which the structure of windows is evident. Clearly, \orsq g this manifold. As explained in the Appendix, the
the diagrams are completely similar to those obtained for attractor§.act that the expansion transverse/bis stronger than the
one alongV, for all values ofp, allowed us to obtain this
In [2] we could follow the first steps of a period-doubling diagram using the PIM-triple method.
cascade out of an unstable periodic orbit®) This led us to We show in Fig 8 a projection of the Hgon saddle onto
thjnk that this map was a good candidate for the formation othe x-z plane atp=6.439. There, we can observe that the
Henon saddles. In fact, using ti&M-triple method23,18,  structure is similar to that of a ien attractokcompare with
as described in the Appendix, we have been able not only tgig. 2). It is smooth along one unstable direction and it has a
find Henon saddles in this map, but also to follow all the Cantor set structure along the stable one.
sequence of bifurcations out of an unstable periodic orbit that As mentioned before, the PIM-triple method was origi-
lead to the formation of the saddle. In this way, we couldnally developed for chaotic saddles of horseshoe type with
generate bifurcation diagrams of nonattracting invariant setsnly one unstable directiof23]. However, it is based on a
as functions ofp, for the double-rotor map. We show an series of assumptions that are fulfilled by certainnbte
example in Fig. 6. saddles with two positive Lyapunov exponents. The method
The invariant sets shown in Fig. 6 are attracting inside arconsists, first, of obtaining a point arbitrarily close to the
invariant 3D manifold, V" (which also changes with). The  stable set of the saddle. This first part of the method con-
invariant set, ajp=6.40, is a 1D unstable and hyperbolic verges under two assumptions. The first assumption is that
period 2 orbitx. Itis born at a “saddle-node” bifurcation, at we can generically intersect the stable set of the saddle with
p~6.36. Actually, immediately after this bifurcation, none a segment. In am-dimensional phase space, arlda saddle
of the new periodic orbits is stable: one is 1D unstable whilewith two positive Lyapunov exponents is attracting in an
the other one is 2D unstable. The invariant manifolds,(m— 1)-dimensional invariant manifold. Therefore, simple
Mp), on which the sets shown in Fig. 6 are attracting, comeadimensional arguments show that a segment can generically
from a smooth deformation &/°(x). At p=6.44, there isno intersect such a manifold, and thus, the stable set of the
longer an invariant set that is attracting M. The Haeon  saddle(see the Appendix Moreover, the fact that we could
saddle suffers a crisis at~6.4395, when it collides with a find a nonattracting chaotic set with two expanding direc-
2D unstable periodic orbit. For larger values pf a tions by “probing” the space with a segment {zer se an
horseshoe-type chaotic saddle, with 2D unstable manifoldsndication that the stable set of the saddle is(af least
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FIG. 8. A plot ofz vs x for a trajectory on a Heon saddle of the
double-rotor map wittp=6.439. Inset: a blowup of the region in-  F|G. 9. (a) A projection of a horseshoe saddle of the double-
dicated in the figure. rotor map atp=5.28. All the periodic orbits that we looked at in

. this saddle were 1D unstabl@) Similar to (a) but for two Henon

(m—1) dimensions, i.e., a H®n saddle. The second as- saddles ap=>5.28. One of them is the set on the top, the other one
sumption of the PIM-triple method is that the intersection ofthe set on the bottom. They are related by a symmetry transforma-
the segment and the stable set consists of disconnecteidn. All the periodic orbits that we looked at in these saddles were
points. Although the invariant manifold, and thus the stable2D unstable(c) Similar to (&) but for another horseshoe saddle at
set of the saddle, can fold onto itself, there will always bep=5.40. There is also another saddle symmetrically conjugated to
gaps in between foldings, so that the intersection of thehis one at the bottom, which we have not drad).A nonattract-
manifold with the segment willgenerically be at most a ing invariant set ap=>5.49 that contains both 1D and 2D unstable
Cantor set. Once a point arbitrarily close to the stable set igeriodic orbits that seems to contain the saddle@in(b), and(c).
found, a chaotic orbit, “almost on” the saddle, is generated.
Having an invariant set with two expanding directions intro-unstable directions. Furthermore, it was mentionef@irthat
duces new effects in this case, which are not discussed ifiese orbits could be created as a critical parameter value
[23]. As explained in more detail in the Appendix, we will was approached, at which new intersections between the rel-
generate such an orbit if the expansion transverse to the igvant manifolds were created. In fact, we show in this paper
variant manifold,V, is stronger than the one along Allthe ~ an example of this type of crisis that occurs in the double-
assumptions of the PIM-triple method also hold for 1D un-rotor map.
stable hyperbolic orbits. This is the reason why we could The example we will show is a little bit more compli-
produce the whole bifurcation diagram of Fig. 6 using thiscated, since we could identify three nonattracting sets that
method. seem to play a role in the process. We show in Fig) @
picture of a chaotic saddle of horseshoe type, for the double-
rotor map withp=5.28. The picture is actually a projection
of the saddle on thg-z plane, which was obtained using the
PIM-triple method. All the periodic orbits in this saddle have

As mentioned in the preceding section, a segment cafD unstable manifoldgat least, all the ones that we looked
generically intersect the stable set of ande saddle with at). For this reason, typical trajectories on the saddle have
two positive Lyapunov exponents. Actually, any 1D mani-only one positive Lyapunov exponent. Moreover, the distri-
fold can do it, since such a saddle is attracting on arbution of finite-time Lyapunov exponents is peaked around
(m—1)-dimensional manifoldas before,m is the phase its mean value, as may be observed in Figgajland 1dc).
space dimensionin particular, the unstable manifold of a We could follow this chaotic saddle for quite a long interval
1D unstable periodic orbiia periodic orbit with one expand- of parameter values. For 5.&$<5.47, it coexists withat
ing direction. Suppose that the periodic orbit is hyperbolic. leas) two Henon saddles with two positive Lyapunov expo-
Then, its stable manifold hasn—1) dimensions. Therefore, nents, i.e., saddles in which all periodic orbits have two un-
it can be generically intersected by a manifold of one orstable directions. These two hien saddles are related by a
more dimensions, in particular, the unstable manifold of anysymmetry transformation. We show a projection of them, at
periodic orbit in the Haon saddle. Thus, as described 24, p=5.28, in Fig. 9b). The distribution of the first and second
in such a case, it is possible to have orbits that repeatedifinite-time Lyapunov exponents of this saddle are also shown
visit the vicinity of periodic points with different numbers of in Figs. 1Ga) and 1Qc). At p=p*, with 5.47<p* <5.49, the

IV. CRISES INVOLVING HE NON SADDLES
IN THE DOUBLE-ROTOR MAP
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FIG. 10. Normalized histograms of the firat, [(a) and(b)], and second\, [(c) and(d)], finite-time Lyapunov exponents of the saddles
in Fig. 9. The lightest columns ifa) and(c) correspond to the horseshoe saddle in F{g),3he intermediate ones to the one in Figa)9
and the darkest ones to thé it saddle in Fig. @). The histograms iib) and(d) correspond to the nonattracting invariant set of Fig).9
All histograms are normalizedle., N()\) is the fraction of trajectories with that value 1, and have been done over a totaNofrajectories
of length 50 withN =700 for the Haon saddle and the postcrisis invariant &t 2900 for the saddle in Fig.(8), andN=5800 for the one
in Fig. 9a).

horseshoe saddle suddenly enlarges. After this crisis, usingrm one(indecomposableinvariant set and that, after this
the PIM-triple method, we find a nonattracting chaotic sethappens, the 1D unstable manifold of some of the periodic
that contains both 1D and 2D unstable periodic orbits. Weprbits in this set intersects the stable set of thedtesaddle.
show a projection of this set in Fig(®. Comparing Figs. Although we cannot follow numerically all the sequence of
9(a), 9(b), and 4d), it looks like the new invariant set “con- events that takes place for 528<5.49, we can conclude
tains” both the horseshoe and théndm saddles that existed that, atp=5.49(i.e., after the crisis there is an invariant set
before the crisis. Actually, we have found that there is anthat contains both 1D and 2D unstable periodic orbits. This is
other horseshoe saddle that also plays a role in the proceseflected in the finite-time Lyapunov exponents, whose dis-
We show a projection of this saddle in Fig(c8 at tributions we show in Fig. 10. Figure (@ contains histo-
p=>5.40. Our simulations indicate th& smooth deforma- grams for the first finite-time exponents of the horseshoe
tion of) all three saddles are contained in the invariant set irsaddle atp=5.28, the other horseshoe saddlepat5.40

Fig. 9d). Although we cannot prove this, we have checked(light grey), and the Haon saddles ap=5.28 (dark grey.
numerically that a typical orbit on the postcrisis invariant setFigure 1@b) contains a similar histogram, but for the postc-
comes within a distance that is of the order of 202 from risis invariant sefat p=5.49). Figures 1@) and 1@d) are
certain periodic orbits that belonged to the precrisis saddlesimilar to Figs. 10a) and 1@b), but for the second Lyapunov
We conjecture that the unstable set of thenbte saddle in-  exponent. There, we observe that the distribution of the post-
tersects the stable set of the horseshoe saddle of @)g.e@ crisis second Lyapunov exponent is spread over both posi-
p=5.28, because typical trajectories, that start close to théve and negative values. This is an indication that there are
Henon saddle, spend a long time close to the horseshoe omegions where there are two expanding directitwisich are
before they eventually land on the attractor of the systentlose to the 2D unstable periodic orBjtsvhile there are
(which, for p=5.28, is a period 2 orbit The simulations others where there is only ori@hich are close to the 1D
suggest that, at some parameter valug**, unstable periodic orbijs Furthermore, we have found sev-
5.28<p** <5.49, the horsehoe saddles of Fig&)@&nd 9c) eral 1D and 2D unstable periodic orbits that, within numeri-
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cally accuracy, seemed to belong to the invariant set of Figsaddles of horseshoe type with one unstable direction, in the
10(d). On the other hand, both postcrisis distributions lookdouble-rotor map.

like a composition of the previous ones, as those encountered Invariant sets that are not attracting have i,mportant effects
in other types of criseg31]. This reinforces the idea that the on the observable dynami€g]. In particular, Haon saddles
postcrisis invariant set contains the horseshoe and therde can give rise to the existence of invariant sets that contain
saddles. We think that this is the reason why there are 1meriodic orbits with different numbers of expanding direc-
and 2D unstable periodic orbits inside the same saddle, 4ons. Moreover, these invariant sets can exist for a whole
p=5.49. Furthermore, using the formulas obtainefd®] to ~ ange of parameter values, i.e., thagrsist We have shown

estimate the dimension of the horseshoe sadblg, at an example of how an invariant set of this type can exist, due
' o the presence of a en saddle, for the double-rotor map.

Z a_rr?é4?n(\\/,\$;?1tb Z;;r?ésgfsrlﬁg Sg:g:,‘esstsaebel? ;(()ett;)e pz?/:/teof thln the example, there is a crisis at which the unstable mani-
obtain D.~1.997 andD.~3.5. Thus. we expect ih ¢ fold of a periodic orbit, that pelongs to a horseshoe saddle,
_ h—= =% s T ’ pect them 10 i tersects the stable set of thérdm saddle. After this crisis,

intersect, generically, in the 4D phase space of the doublé; q\y jnvariant set, containing periodic orbits with one and

rotor map.ld low the invari " g two expanding directions, exists. This becomes evident when
We could follow the invariant setwith 1D and 2D un- e gistribution of the precrisis and posterisis finite-time

stable periodic orbifsup top~6.85. At this parameter value, | yannoy exponents is studied. The distribution of the sec-

the attractor of the map suffers a crisis, after which it in- oq4"| vapunov exponent is spread over both positive and
creases significantly in size. Our numerical calculations 'nd"negative values after the crisis. It is interesting to note that

cate that the invariant set we followed is inside the attractofys jnvariant set is incorporated into the attractor at a larger
after this crisis. Furthermore, as showr{ &), after the crisis, arameter value. After this, the distribution of the second
the second finite-time_l__yapunov exponent of the attractor i_ inite-time Lyapunov exponent of a typical trajectasy the
spread over both positive and negative values. Also in thiSyactor is also spread over positive and negative values.
case, we made pictures, equivalent to those in Fig. 10, ob- tact a5 mentioned if2], typical trajectories that visit
taining strikingly similar results. We then conclude that it i y,¢ \icinity of periodic orbits with different numbers of ex-
the presence of th_e ien saddle that is ultimately resSpon- nanding directions have finite-time Lyapunov exponents that
sible for the coexistence of 1D and 2D unstable periodiGhange sign along the orbit. If this causes the exponent to
orbits inside the same chaotic attractor. fluctuate about zero, then any noise added to the trajectory
(such as the one that is unavoidable in numerical simula-
tions) makes the noisy trajectory basically unshadowéab]e
V. CONCLUSIONS For this reason, numerically generated trajectories of this

: . - -type are highly unreliable. On the other hand, if the noise is
We have studied various types of nonattracting chaoué trinsic, then the meaning of the model is at stake. These

sets in maps of more than 2 dimensions, maps that have ng

been studied very often in the physics literature. We hav ehaviors can be due to the presence of addesaddle. .
shown that, in this kind of maps, both chaotic saddles o urthermore, Heon saddles are generically formed at certain

horseshoe type and Hen saddles can exist. Hen saddles types of homoclinic bifurcations in diffeomophisms of more

are nonattracting chaotic sets that arenbie attractors when :han tW]? (:ln(;e_nsmhr@ﬁl]. ;hese _reaslons Shoév the d(ljrlnpor-
the dynamics is restricted to an invariant manifold of lower ance or studying higher-aimensional mapsnoe sadcles,

dimension than the phase space. This means that they ?Qd the new type of dynamical behaviors they can give rise

smooth along one unstable direction, while chaotic saddleS™

of horseshoe type are ngihey are products of Cantor sets or

products of Cantor sets and isolated poin®ypical trajec- ACKNOWLEDGMENTS
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trajectories on both types of chaotic saddles. Although the

PIM-triple method was originally developed for saddles of APPENDIX
horsehoe type with only one unstable direction, we have
shown, in this paper, that it can also be used fomste The PIM-triple procedure for finding nonattracting invari-

saddles such that the strongest unstable direction is trangnt setsS, and, in particular, chaotic saddles, can be divided
verse to the manifold on which the saddle is attracting. Ininto two stepg23]. The first onethe static problemconsists
fact, we have shown that, using this method, we can follow &f finding a segment,, that is as small as we want and that
whole sequence of bifurcations on this invariant manifoldis as close as we wafdlways within numerical accuragjo
that eventually gives rise to a Hen saddle. All the ex- a point in the stable set &, W*(S). In order to do this, we
amples shown in this paper correspond to the double-rotdirst choose a subset of phase spatecalled therestraining
map [19], a 4D map that describes the simple mechanicaregion which we think contains the invariant nonattracting
system shown in Fig. 5. As far as we know, this is the firstset, S, but no attractorsR can be multiply connected, but
time that a Haon saddle and all the bifurcations that lead tothere are always open sets entirely contained in it. THus,
its formation are obtained numerically in any diffeomor- also contains smooth subsets \WF(S). For example, sup-
phism. Using the PIM-triple method we have also foundpose that we want to obtain the invariant set of the horseshoe
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map in the unit squarék can either be the unit square or it between foldings, so that the intersection of the manifold
can be two horizontal or two vertical stripes in which the With a segment that intersects it transversely can be at most a

invariant set is entirely containgdee, e.g.[12], p. 230. In

Cantor set. This means that we can solve the static problem

either case, a set dhorizonta) segments contained in the for a Henon saddle using the PIM-triple method.

stable manifold ofS will be inside’R. After R is defined, we
choose a segmenkyC R, which, for the method to work,

Once the static problem is solvdd,is iterated forward in
time by the map,f. Given thatl, is sufficiently small,

must intersects(S) transversally. Now, this will occur ge- f(lo) will be another segment,, typically longer tharo.

nerically if the dimension ofA°(S) is big enough, in par-

In the case of only one positive Lyapunov exponéhtwill

ticular, if dim(W5(S))+1—m=0, wherem is the phase be better aligned along the expanding direction thaand
space dimension. So, by trial and error, we will genericallywill also intersectW®(/N) transversally. The method, then,

find such an intersection, provided
dim(W5(S))=m—1. This will occur, for example, in the
case of the horseshoe map already mentioned, sine@
andWs3(S) is a Cantor set of 1D manifoldéiorizontal lines.

that proceeds as in the previous step: a very small segment
I.CI; is found that also intersecW&(N) transversally. All
these steps are repeated so that a sequence of seggments
1,.Cf(lg), 1,CF(1)CF2(lg),- -, 1,Cf(I,_1) (o), is

The same will happen for any value of the phase space dibtained, all of which interset/*(S) transversally. It can be

mension,m, if W5(S) is the union of m—1)-dimensional

proved that there is a forward orbft;}i~ in W(S), such

manifolds, as in the case of a horseshoe-type invariant sehat the distance betweénandx; is very small,Vi<n and
with only one unstable direction. Now, in order to find an very largen [23]. Since an orbit inV3(S) will approachsS as

arbitrarily small segment,Cl; that intersects\V>(S), the

n—oo, neglecting the first segments, we get, by this proce-

method works under the assumption that the intersectiodure, an approximation of an orbit il Furthermore, if the

consists of disconnected poinfis has been proved if23]
that it converges in this casdn particular, it works for the

Loy I1, ...

segments are sufficiently small, then a plot of the sequence

Jn would be indistinguishable from the real tra-

horseshoe map since, in that case, the intersection will be jactory made out of points. In the case of thende saddle,
Cantor sefunless the segment is exactly horizontal and issince there are two expanding directions, the sequence of
contained inW5(S), but the probability that this occurs in the segments will tend to align along the most unstable direction.
general case is zefoNow, Henon saddles have at least two Therefore, the variouy will intersect the invariant manifold
positive Lyapunov exponents, and thus, at least two expandn which S is attracting transversally only if the strongest
ing directions. Why may the method apply? Let us consideexpanding direction is also transverse to this manifold. Un-
a Henon saddleS, in an m-dimensional phase space, with der such condition, the PIM-triple method can be applied to
two expanding directions. Such a saddle is attracting in ambtain Heon saddles with two positive Lyapunov expo-

(m—1)-dimensional invariant manifold. Therefor@/*(S)

nents. Moreover, the fact that we indeed find an invariant set

will generically intersect transversally @D) segment. On  with two positive Lyapunov exponents by “probing” the
the other hand, although the invariant manifold, and thuspace with a segment is in itself proof that its stable set is at
W5(S), can fold onto itself, there will always be gaps in least fn—1)-dimensional.
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